
CONTENTS 0.1 ORDINARY DIFFERENTIAL EQUATIONS (ODES)

Lecture 0: Preliminaries

Erfan Nozari

September 24, 2022

Welcome to ME 120! This course provides you with the basics of linear systems analysis and control and
is aimed to catalyze, at an introductory level, between pure math and engineering applications.

In this note I brush up some of the basic mathematical concepts that we need to begin with: differential
equations, complex numbers, and some MATLAB. Remember that I am assuming you have learned these
in related courses before, and here only aim to briefly review them, so feel free to make a pass at your
old notes and textbooks if you feel the need to!

Contents

0.1 Ordinary Differential Equations (ODEs) . 1

0.1.1 Notation (Time derivative) . 2

0.1.2 MATLAB (Numeric vs. symbolic math) . 3

0.1.3 MATLAB (Solving first-order ODEs) . 3

0.1.4 Exercise (Solving more complex ODEs) . 4

0.2 Complex Numbers . 4

0.2.1 Notation (Real and complex numbers) . 5

0.2.2 Definition (Complex exponential) . 5

0.2.3 MATLAB (“for” loop and exponential function) . 5

0.2.4 Definition (Cartesian and polar forms) . 6

0.2.5 Definition (Complex number attributes) . 6

0.2.6 MATLAB (Complex attributes) . 6

0.2.7 Theorem (Fundamental theorem of algebra) . 7

0.2.8 Exercise (Roots of cubic polynomial) . 7

0.2.9 MATLAB (Roots of polynomials) . 7

0.1 Ordinary Differential Equations (ODEs)

Remember that an ODE is a mathematical algebraic relationship between a function, say x(t), and its
derivatives. The independent variable t does not need to be time, but in this course we are only interested

1

ME 120 – Linear Systems and Control
Copyright © 2022 by Erfan Nozari. Permission is granted to copy, distribute and modify this file, provided that the original

source is acknowledged.

0.1 ORDINARY DIFFERENTIAL EQUATIONS (ODES)

in derivatives with respect to time. Some toy examples are

ẋ(t) = −x(t) + 2 cos(t) (0.1a)

cos
(
x3(t)− eẋ(t)

)
− sin(8t) = 0 (0.1b)

ẍ(t)− ẋ(t) + 2x(t) = te−t (0.1c)

but there are also extensively used real-world examples all over science and engineering, such as

Newton’s 2nd law: u(t) = mẍ(t) (0.2a)

Harmonic oscillator: ẍ(t) = −αx(t) (0.2b)

Van der Pol’s oscillator: ẍ(t) + µ(x2(t)− 1)ẋ(t) + x(t) = 0 (0.2c)

Hodgkin-Huxley neuron model: u(t) = Cẋ(t) + gK(x(t)− VK) + gNa(x(t)− VNa) + gL(x(t)− VL) (0.2d)

Chemical reactions: ẋ(t) = γ1k1x(t)
au(t)b + γ2k2x(t)

cu(t)d (0.2e)

Notation 0.1.1 (Time derivative) As you have noticed, we use dots to show derivatives, so

ẋ(t) =
d

dt
x(t)

ẍ(t) =
d2

dt2
x(t)

and so on. □

In all the ODEs in Eq. (0.2), the constant variables m,α, µ,C, ... are parameters. More important is the
function u(t) of time, which represents “external inputs” to the ODE. In general u(t) may be any function
of time, such as

u(t) = 0

u(t) = αeβt

u(t) = A cos(ωt+ θ0)

...

Solving an ODE means finding a function (or functions) x(t) that satisfy the ODE. The function x(t) =
e−t +

√
2 cos(t−π/4), for example, satisfies Eq. (0.1a) (check it!). But so does x(t) = ke−t +

√
2 cos(t−π/4)

for any number k. This is why solving an ODE for a unique solution needs more information, typically
provided as “initial conditions”

x(t0) = x0

ẋ(t0) = ẋ0

...

where t0 is some “initial time” (often 0) and x0, ẋ0, . . . are given numbers. The number of initial conditions
needed to solve an ODE for a unique solution is typically as many as the largest order of derivative in the
ODE.

As you might remember from your course in differential equations, not all ODEs can be analytically solved,
and solving them is quite some art! Fortunately, we here only care about linear ODEs, which have various
systematic method to solve. But before getting there, let’s see how we can solve (linear and nonlinear) ODEs
using MATLAB.

2

ME 120 – Linear Systems and Control
Copyright © 2022 by Erfan Nozari. Permission is granted to copy, distribute and modify this file, provided that the original

source is acknowledged.

0.1 ORDINARY DIFFERENTIAL EQUATIONS (ODES)

MATLAB 0.1.2 (Numeric vs. symbolic math) When using MATLAB, you have two main options:

• Numeric calculations

• Symbolic calculations

As the name suggests, numeric calculations use real (or complex) numbers, while symbolic calculations try
to mimic hand-written formulas where we mix numbers and symbols. For example, try

1 syms x y
2 expand((x + y)ˆ2)

The syms command defines symbolic variables, and the expand command tries to expand a symbolic ex-
pression into simpler terms. Another useful command when using symbolic math is simplify. For example,
try

1 syms theta
2 simplify(sin(theta)ˆ2 + cos(theta)ˆ2)

or

1 syms a b
2 simplify((a+b)ˆ2 - 2*a*b)

As you see, it tries to simplify the expression by cancelling out terms, applying trigonometric identities, etc.
Finally, when using symbolic math, it’s nice to visualize expressions the way we write them on paper. For
example, try

1 % Assuming that you have defined x and y above
2 f = sqrt(xˆ2 + 1) / ((xˆ3 + 1)ˆ2 - 2*x*y)
3 pretty(f)

□

MATLAB 0.1.3 (Solving first-order ODEs) ODEs can be solved both numerically and symbolically in
MATLAB, and both have their advantages and disadvantages. Symbolic solutions are perfectly exact, but
they only exist for very simple ODEs, whereas numeric solutions are approximates but computing them is
usually faster and they exist for virtually all ODEs.

You can use dsolve() to solve ODEs analytically and ode45() to solve them numerically. For example, to
solve Eq. (0.1a) with x(0) = 2 analytically, use

1 syms t x(t)
2 sol = dsolve(diff(x) == -x + 2*cos(t), x(0) == 2)

In the first line, we are defining x as a symbolic function of t. Note that you don’t have to define the symbolic
variable t separately. The second line solves the ODE. Try removing the initial condition and see how the
solution changes:

1 % Assuming that you have defined x(t) above
2 sol = dsolve(diff(x) == -x + 2*cos(t))

3

ME 120 – Linear Systems and Control
Copyright © 2022 by Erfan Nozari. Permission is granted to copy, distribute and modify this file, provided that the original

source is acknowledged.

0.2 COMPLEX NUMBERS

You see that the solution includes a constant, because without initial conditions, the ODE has infinitely
many solutions.

Now we solve the same equation numerically. Here, we have to provide the initial condition because everything
has to be in numbers (no symbolic variables anymore). Even more, we have to specify the exact time interval
over which we want the solution. So, try

1 odefun = @(t, x)-x + 2*cos(t);
2 tinterval = [0 100];
3 x0 = 2;
4 [tspan, x] = ode45(odefun, tinterval, x0);

The first line is the most confusing part. This is MATLAB syntax for defining what is called a “function
handle”. So when you run the first line, MATLAB defines the function f(t, x) = −x + 2 cos(t) for you
internally, and returns a “handle” to it called odefun which you can use to call that function. So after
running the first line, you can run

1 odefun(0, 2)
2 odefun(pi/2, 2)
3 odefun(pi, 3)

and so on. So I want you to realize that the first line by itself has nothing to do with solving ODEs. It
is just a way of defining functions in MATLAB, and one application of it is in solving ODEs. The second
line above defines the interval of time over which you want to solve the ODE, and the third line defines
the initial condition. The ODE is solved in the last line, when you call the MATLAB function ode45. The
second output is the solution, and the first output is a list of time points corresponding to x. To visualize
the solution, try

1 figure
2 plot(tspan, x)

The first line opens an empty figure, and the second line plots tspan on the horizontal axis and x on the
vertical axis. □

Exercise 0.1.4 (Solving more complex ODEs) Try solving Eq. (0.1b) both symbolically and numeri-
cally in MATLAB. Visualize your results for different initial conditions. □

0.2 Complex Numbers

Complex numbers are essential in the linear systems theory because of their role in finding the roots of
polynomial functions (to be discussed shortly). Recall (or learn!) that a complex number is nothing but an
ordered pair (x, y) of real numbers x, y ∈ R, with a specific rule for multiplication such that

(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1) (0.3)

For simplicity, we then define

j = (0, 1)

as the imaginary unit number, and take complex number (x, 0) equivalent to the real number x. Then, it is
easy to show that any complex number (x, y) can also be represented as x + jy (check yourself!), which is

4

ME 120 – Linear Systems and Control
Copyright © 2022 by Erfan Nozari. Permission is granted to copy, distribute and modify this file, provided that the original

source is acknowledged.

0.2 COMPLEX NUMBERS

what we often know as complex numbers. It also follows from Eq. (0.3) that

j2 = j · j = (0, 1) · (0, 1) = (−1, 0) = −1

or, as commonly known, j =
√
−1.

One of the most important elements in complex analysis is the complex exponential. Recall that the real
exponential ex is defined though the infinite sum

ex = 1 + x+
x2

2
+

x3

3!
+ · · · =

∞∑
k=0

xk

k!

and has the property that ex+y = exey.

Notation 0.2.1 (Real and complex numbers) You have noticed that we use R to show the set of real
numbers. We will similarly use C for the set of complex numbers. □

Definition 0.2.2 (Complex exponential) For a complex number z = x+jy ∈ C, the complex exponential
is defined using the same sum as the real exponential,

ez =

∞∑
k=0

zk

k!
(0.4)

and has the property that, for x ∈ R,

ejx = cosx+ j sinx

which is called the Euler’s formula. □

MATLAB 0.2.3 (“for” loop and exponential function) One of the most important concepts in pro-
gramming are loops, and we can learn/recall them here to better understand Eq. (0.4). Recall that the
infinite series in Eq. (0.4) means that if K is large enough, then

ez ≃
K∑

k=0

zk

k!
= 1 + z +

z2

2
+ · · ·+ zK

K!

So try the following for different complex values for z and integer values for K:

1 z = 1 + 2j;
2 K = 20;
3 finite sum = 0;
4 for k = 0:K
5 finite sum = finite sum + zˆk / factorial(k);
6 end
7 error = abs(exp(z) - finite sum)

□

Similar to the real exponential, the complex exponential satisfies ez1+z2 = ez1ez2 . Therefore,

ex+jy = exejy = ex cos y + jex sin y

This motivates a very useful transformation in complex numbers, that to “polar coordinates”.

5

ME 120 – Linear Systems and Control
Copyright © 2022 by Erfan Nozari. Permission is granted to copy, distribute and modify this file, provided that the original

source is acknowledged.

0.2 COMPLEX NUMBERS

Definition 0.2.4 (Cartesian and polar forms) The complex number z = x+jy is said to be in Cartesian
coordinates, since it can be drawn as the point (x, y) on the Cartesian plane (shown below). Let (r, θ) be the
representation of the same point in the plane in polar coordinates, as shown. Then

z = x+ jy = r cos θ + jr sin θ = r
(
cos θ + j sin θ) = rejθ

The representation z = rejθ is called the polar form of z.

□

We are now ready for a few more fundamental definitions about complex numbers.

Definition 0.2.5 (Complex number attributes) For a complex number z = x+ jy = rejθ,

• x is called the real part of z, shown as Re{z};

• y is called the imaginary part of z, shown as Im{z};

• r is called the modulus of z, shown as |z|, and equal to
√

x2 + y2; note that

|ejθ| =
√
cos2 θ + sin2 θ = 1

• θ is called the argument of z, shown as ∡z

• z̄ = x− jy = re−jθ is called the complex conjugate of z.

□

MATLAB 0.2.6 (Complex attributes) You can transform complex numbers from Cartesian to polar
coordinates and vice versa, and compute real part, etc. For example,

1 z = 3 - 4j;
2 x = real(z)
3 y = imag(z)
4 r = abs(z)
5 theta = angle(z) % in radians
6 theta = angle(z) * 180 / pi % in degrees
7 [theta, r] = cart2pol(x, y) % should get same theta and r as above
8 [x, y] = pol2cart(theta, r) % should get same x and y as above

□

As I mentioned earlier, our main reason to dealing with complex numbers in linear systems and control is
because of their role in the roots of polynomial functions. The following theorem shows how.

6

ME 120 – Linear Systems and Control
Copyright © 2022 by Erfan Nozari. Permission is granted to copy, distribute and modify this file, provided that the original

source is acknowledged.

0.2 COMPLEX NUMBERS

Theorem 0.2.7 (Fundamental theorem of algebra) Consider the polynomial function

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0.

where the coefficients a0, . . . , an are complex numbers and not all equal to 0. Then, the equation

p(z) = 0 (0.5)

has exactly n (potentially repeated) complex solutions called the roots of the polynomial p. □

Note the difference between real roots and complex roots. For example, p(x) = x2+k, x ∈ R has two solutions
only if k < 0, one solution if k = 0, and no solutions if k > 0, but p(z) = z2 + k, z ∈ C always has exactly
two solutions.

In this course, we only care about the cases where the coefficients a0, . . . , an are real. In this case, it is not
hard to show that all the solutions to Eq. (0.5) are either real, or if they are complex, they come in complex
conjugate form. In other words, if p(z) = 0, then necessarily p(z̄) = 0 as well.

Exercise 0.2.8 (Roots of cubic polynomial) How many of the roots of p(z) = a3z
3 + a2z

2 + a1z + a0
can be complex? □

MATLAB 0.2.9 (Roots of polynomials) Numerically, use the function roots() to find the roots of a
polynomial. Provide only the polynomial coefficients to the function. For example, for

p(z) = z5 − 2z4 + 3z2

= z5 − 2z4 + 0z3 + 3z2 + 0z + 0

you use

1 p = [1 -2 0 3 0 0];
2 z = roots(p)

Alternatively, define p(z) as a symbolic expression and use solve to obtain its roots analytically (if possible)

1 syms z
2 p(z) = zˆ5 - 2 * zˆ4 + 3 * zˆ2;
3 sol = solve(p == 0)

To see what happens if the solutions don’t have a closed-form expression, try solving p(z) = 3z5 − 5z4 +3z2.
□

7

ME 120 – Linear Systems and Control
Copyright © 2022 by Erfan Nozari. Permission is granted to copy, distribute and modify this file, provided that the original

source is acknowledged.

	Ordinary Differential Equations (ODEs)
	Notation (Time derivative)
	MATLAB (Numeric vs. symbolic math)
	MATLAB (Solving first-order ODEs)
	Exercise (Solving more complex ODEs)

	Complex Numbers
	Notation (Real and complex numbers)
	Definition (Complex exponential)
	MATLAB (``for" loop and exponential function)
	Definition (Cartesian and polar forms)
	Definition (Complex number attributes)
	MATLAB (Complex attributes)
	Theorem (Fundamental theorem of algebra)
	Exercise (Roots of cubic polynomial)
	MATLAB (Roots of polynomials)

